

CodeIgniter

i

About the Tutorial

CodeIgniter is a powerful PHP framework with a very small footprint, built for developers

who need a simple and elegant toolkit to create full-featured web applications.

CodeIgniter was created by EllisLab, and is now a project of the British Columbia

Institute of Technology.

Audience

This tutorial has been prepared for developers who would like to learn the art of

developing websites using CodeIgniter. It provides a complete understanding of this

framework.

Prerequisites

Before you start proceeding with this tutorial, we assume that you are already exposed

to HTML, Core PHP, and Advance PHP. We have used CodeIgniter version 3.0.1 in all the

examples.

Copyright & Disclaimer

Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

CodeIgniter

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. CODEIGNITER – OVERVIEW ... 1

2. INSTALLING CODEIGNITER ... 3

3. APPLICATION ARCHITECTURE .. 4

Directory Structure.. 5

4. CODEIGNITER – MVC FRAMEWORK ... 8

5. CODEIGNITER – BASIC CONCEPTS .. 9

Controllers .. 9

Views .. 11

Models .. 13

Helpers .. 15

Routing ... 16

6. CODEIGNITER – CONFIGURATION ... 19

Configuring Base URL .. 19

Database Configuration... 19

Autoload Configuration ... 21

7. WORKING WITH DATABASE ... 23

Connecting to a Database ... 23

Inserting a Record ... 23

CodeIgniter

iii

Updating a Record ... 24

Deleting a Record .. 25

Selecting a Record ... 26

Closing a Connection ... 26

Example .. 26

8. CODEIGNITER – LIBRARIES ... 33

Library Classes ... 33

Creating Libraries .. 34

9. ERROR HANDLING ... 37

10. FILE UPLOADING .. 39

11. SENDING EMAIL ... 43

12. FORM VALIDATION .. 49

13. SESSION MANAGEMENT .. 55

14. FLASHDATA ... 58

15. TEMPDATA .. 61

16. COOKIE MANAGEMENT ... 65

17. COMMON FUNCTIONS .. 68

18. PAGE CACHING .. 71

19. PAGE REDIRECTION ... 73

20. APPLICATION PROFILING ... 75

21. BENCHMARKING ... 77

22. ADDING JS AND CSS ... 80

CodeIgniter

iv

23. INTERNATIONALIZATION ... 83

24. CODEIGNITER – SECURITY ... 88

XSS Prevention .. 88

SQL Injection Prevention ... 88

Hiding PHP Errors .. 89

CSRF Prevention .. 90

Password Handling .. 90

CodeIgniter

1

CodeIgniter is an application development framework, which can be used to develop

websites, using PHP. It is an Open Source framework. It has a very rich set of

functionality, which will increase the speed of website development work.

If you know PHP well, then CodeIgniter will make your task easier. It has a very rich set

of libraries and helpers. By using CodeIgniter, you will save a lot of time, if you are

developing a website from scratch. Not only that, a website built in CodeIgniter is secure

too, as it has the ability to prevent various attacks that take place through websites.

CodeIgniter Features

Some of the important features of CodeIgniter are listed below:

 Model-View-Controller Based System

 Extremely Light Weight

 Full Featured database classes with support for several platforms.

 Query Builder Database Support

 Form and Data Validation

 Security and XSS Filtering

 Session Management

 Email Sending Class. Supports Attachments, HTML/Text email, multiple protocols

(sendmail, SMTP, and Mail) and more.

 Image Manipulation Library (cropping, resizing, rotating, etc.). Supports GD,

ImageMagick, and NetPBM

 File Uploading Class

 FTP Class

 Localization

 Pagination

 Data Encryption

 Benchmarking

 Full Page Caching

 Error Logging

 Application Profiling

 Calendaring Class

 User Agent Class

 Zip Encoding Class

1. CodeIgniter – Overview

CodeIgniter

2

 Template Engine Class

 Trackback Class

 XML-RPC Library

 Unit Testing Class

 Search-engine Friendly URLs

 Flexible URI Routing

 Support for Hooks and Class Extensions

 Large library of “helper” functions

CodeIgniter

3

It is very easy to install CodeIgniter. Just follow the steps given below:

 Step-1: Download the CodeIgniter from the link

http://www.codeigniter.com/download

 Step-2: Unzip the folder.

 Step-3: Upload all files and folders to your server.

 Step-4: After uploading all the files to your server, visit the URL of your server,

e.g., www.domain-name.com.

On visiting the URL, you will see the following screen:

2. Installing CodeIgniter

http://www.codeigniter.com/download

CodeIgniter

4

The architecture of CodeIgniter application is shown below.

Figure: CodeIgniter Application Flowchart

 As shown in the figure, whenever a request comes to CodeIgniter, it will first go

to index.php page.

 In the second step, Routing will decide whether to pass this request to step-3 for

caching or to pass this request to step-4 for security check.

 If the requested page is already in Caching, then Routing will pass the request

to step-3 and the response will go back to the user.

 If the requested page does not exist in Caching, then Routing will pass the

requested page to step-4 for Security checks.

 Before passing the request to Application Controller, the Security of the

submitted data is checked. After the Security check, the Application Controller

loads necessary Models, Libraries, Helpers, Plugins and Scripts and pass it

on to View.

 The View will render the page with available data and pass it on for Caching. As

the requested page was not cached before so this time it will be cached in

Caching, to process this page quickly for future requests.

3. Application Architecture

CodeIgniter

5

Directory Structure

The image given below shows the directory structure of the CodeIgniter.

Figure: Directory Structure

CodeIgniter directory structure is divided into 3 folders:

 Application

 System

 User_guide

Application

As the name indicates the Application folder contains all the code of your application that

you are building. This is the folder where you will develop your project. The Application

folder contains several other folders, which are explained below:

 Cache: This folder contains all the cached pages of your application. These

cached pages will increase the overall speed of accessing the pages.

 Config: This folder contains various files to configure the application. With the

help of config.php file, user can configure the application. Using database.php

file, user can configure the database of the application.

 Controllers: This folder holds the controllers of your application. It is the basic

part of your application.

 Core: This folder will contain base class of your application.

 Helpers: In this folder, you can put helper class of your application.

CodeIgniter

6

 Hooks: The files in this folder provide a means to tap into and modify the inner

workings of the framework without hacking the core files.

 Language: This folder contains language related files.

 Libraries: This folder contains files of the libraries developed for your application.

 Logs: This folder contains files related to the log of the system.

 Models: The database login will be placed in this folder.

 Third_party: In this folder, you can place any plugins, which will be used for

your application.

 Views: Application’s HTML files will be placed in this folder.

System

This folder contains CodeIgniter core codes, libraries, helpers and other files, which help

make the coding easy. These libraries and helpers are loaded and used in web app

development.

This folder contains all the CodeIgniter code of consequence, organized into various

folders:

 Core: This folder contains CodeIgniter’s core class. Do not modify anything here.

All of your work will take place in the application folder. Even if your intent is to

extend the CodeIgniter core, you have to do it with hooks, and hooks live in the

application folder.

 Database: The database folder contains core database drivers and other

database utilities.

 Fonts: The fonts folder contains font related information and utilities.

 Helpers: The helpers folder contains standard CodeIgniter helpers (such as date,

cookie, and URL helpers).

 Language: The language folder contains language files. You can ignore it for

now.

 Libraries: The libraries folder contains standard CodeIgniter libraries (to help you

with e-mail, calendars, file uploads, and more). You can create your own libraries

or extend (and even replace) standard ones, but those will be saved in the

application/libraries directory to keep them separate from the standard

CodeIgniter libraries saved in this particular folder.

User_guide

This is your user guide to CodeIgniter. It is basically, the offline version of user guide on

CodeIgniter website. Using this, one can learn the functions of various libraries, helpers

CodeIgniter

7

and classes. It is recommended to go through this user guide before building your first

web app in CodeIgniter.

Beside these three folders, there is one more important file named “index.php”. In this

file, we can set the application environment and error level and we can define system

and application folder name. It is recommended, not to edit these settings if you do not

have enough knowledge about what you are going to do.

CodeIgniter

8

CodeIgniter is based on the Model-View-Controller (MVC) development pattern.

MVC is a software approach that separates application logic from presentation. In

practice, it permits your web pages to contain minimal scripting since the presentation is

separate from the PHP scripting.

Figure: CodeIgniter – MVC Framework

 The Model represents your data structures. Typically, your model classes will

contain functions that help you retrieve, insert and update information in your

database.

 The View is information that is being presented to a user. A View will normally be

a web page, but in CodeIgniter, a view can also be a page fragment like a header

or footer. It can also be an RSS page, or any other type of “page”.

 The Controller serves as an intermediary between the Model, the View, and any

other resources needed to process the HTTP request and generate a web page.

4. CodeIgniter – MVC Framework

CodeIgniter

9

Controllers

A controller is a simple class file. As the name suggests, it controls the whole application

by URI.

Creating a Controller

First, go to application/controllers folder. You will find two files there, index.html

and Welcome.php. These files come with the CodeIgniter.

Keep these files as they are. Create a new file under the same path named “Test.php”.

Write the following code in that file:

<?php

class Test extends CI_Controller {

 public function index()

 {

 echo "Hello World!";

 }

}

?>

The Test class extends an in-built class called CI_Controller. This class must be

extended whenever you want to make your own Controller class.

Calling a Controller

The above controller can be called by URI as follows:

http://www.your-domain.com/index.php/test

Notice the word “test” in the above URI after index.php. This indicates the class name of

controller. As we have given the name of the controller “Test”, we are writing “test”

after the index.php. The class name must start with uppercase letter but we need to

write lowercase letter when we call that controller by URI. The general syntax for

calling the controller is as follows:

http://www.your-domain.com/index.php/controller/method-name

5. CodeIgniter – Basic Concepts

CodeIgniter

10

Creating & Calling Constructor Method

Let us modify the above class and create another method named “hello”.

<?php

class Test extends CI_Controller {

 public function index()

 {

 echo "This is default function.";

 }

 public function hello()

 {

 echo "This is hello function.";

 }

}

?>

We can execute the above controller in the following three ways:

1. http://www.your-domain.com/index.php/test

2. http://www.your-domain.com/index.php/test/index

3. http://www.your-domain.com/index.php/test/hello

After visiting the first URI in the browser, we get the output as shown in the picture

given below. As you can see, we got the output of the method “index”, even though we

did not pass the name of the method the URI. We have used only controller name in the

URI. In such situations, the CodeIgniter calls the default method “index”.

Visiting the second URI in the browser, we get the same output as shown in the above

picture. Here, we have passed method’s name after controller’s name in the URI. As the

name of the method is “index”, we are getting the same output.

CodeIgniter

11

Visiting the third URI in the browser, we get the output as shown in picture given below.

As you can see, we are getting the output of the method “hello” because we have

passed “hello” as the method name, after the name of the controller “test” in the URI.

Points to Remember:

 The name of the controller class must start with an uppercase letter.

 The controller must be called with lowercase letter.

 Do not use the same name of the method as your parent class, as it will override

parent class’s functionality.

Views

This can be a simple or complex webpage, which can be called by the controller. The

webpage may contain header, footer, sidebar etc. View cannot be called directly. Let us

create a simple view. Create a new file under application/views with name “test.php”

and copy the below given code in that file.

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>CodeIgniter View Example</title>

</head>

<body>

 CodeIgniter View Example

</body>

</html>

CodeIgniter

12

Change the code of application/controllers/test.php file as shown in the below.

Loading the View

The view can be loaded by the following syntax:

$this->load->view('name');

Where name is the view file, which is being rendered. If you have planned to store the

view file in some directory then you can use the following syntax:

$this->load->view('directory-name/name');

It is not necessary to specify the extension as php, unless something other than .php is

used.

The index() method is calling the view method and passing the “test” as argument to

view() method because we have stored the html coding in “test.php” file under

application/views/test.php.

<?php

class Test extends CI_Controller {

 public function index()

 {

 $this->load->view('test');

 }

}

?>

Here is the output of the above code:

CodeIgniter

13

The following flowchart illustrates of how everything works:

Models

Models classes are designed to work with information in the database. As an example, if

you are using CodeIgniter to manage users in your application then you must have

model class, which contains functions to insert, delete, update and retrieve your users’

data.

Creating Model Class

Model classes are stored in application/models directory. Following code shows how to

create model class in CodeIgniter.

<?php

Class Model_name extends CI_Model{

 Public function __construct()

 {

 parent::__construct();

 }

}

?>

Views

$this->load->view('test') will render the view file application/views/test.php and
generates the output.

Controller

The index.php file will call the class application/controllers/Test.php. As the method
name hasn't been passed in the URI, the default index() method will be called which will

indirectly call the application/views/test.php file.

http://www.your-domain.com/index.php/test

The above URI will first call the index.php file in your CodeIgniter folder.

CodeIgniter

14

Where Model_name is the name of the model class that you want to give. Each model

class must inherit the CodeIgniter’s CI_Model class. The first letter of the model class

must be in capital letter. Following is the code for users’ model class.

<?php

Class zzzextends CI_Model{

Public function __construct()

{

 parent::__construct();

}

}

?>

The above model class must be saved as User_model.php. The class name and file name

must be same.

Loading Model

Model can be called in controller. Following code can be used to load any model.

$this->load->model('model_name');

Where model_name is the name of the model to be loaded. After loading the model you

can simply call its method as shown below.

$this->model_name->method();

Auto-loading Models

There may be situations where you want some model class throughout your application.

In such situations, it is better if we autoload it.

CodeIgniter

15

As shown in the above figure, pass the name of the model in the array that you want to

autoload and it will be autoloaded, while system is in initialization state and is accessible

throughout the application.

Helpers

As the name suggests, it will help you build your system. It is divided into small

functions to serve different functionality. A number of helpers are available in

CodeIgniter, which are listed in the table below. We can build our own helpers too.

Helpers are typically stored in your system/helpers, or application/helpers

directory. Custom helpers are stored in application/helpers directory and systems’

helpers are stored in system/helpers directory. CodeIgniter will look first in your

application/helpers directory. If the directory does not exist or the specified helper is

not located, CodeIgniter will instead, look in your global system/helpers/ directory.

Each helper, whether it is custom or system helper, must be loaded before using it.

Helper Name Description

Array Helper
The Array Helper file contains functions that assist in

working with arrays.

CAPTCHA Helper
The CAPTCHA Helper file contains functions that assist in

creating CAPTCHA images.

Cookie Helper
The Cookie Helper file contains functions that assist in

working with cookies.

Date Helper
The Date Helper file contains functions that help you work

with dates.

Directory Helper
The Directory Helper file contains functions that assist in

working with directories.

Download Helper
The Download Helper lets you download data to your

desktop.

Email Helper

The Email Helper provides some assistive functions for

working with Email. For a more robust email solution, see

CodeIgniter’s Email Class.

File Helper
The File Helper file contains functions that assist in

working with files.

Form Helper
The Form Helper file contains functions that assist in

working with forms.

HTML Helper
The HTML Helper file contains functions that assist in

working with HTML.

Inflector Helper
The Inflector Helper file contains functions that permits

you to change words to plural, singular, camel case, etc.

Language Helper
The Language Helper file contains functions that assist in

working with language files.

Number Helper
The Number Helper file contains functions that help you

work with numeric data.

Path Helper
The Path Helper file contains functions that permits you to

work with file paths on the server.

Security Helper
The Security Helper file contains security related

functions.

CodeIgniter

16

Smiley Helper
The Smiley Helper file contains functions that let you

manage smileys (emoticons).

String Helper
The String Helper file contains functions that assist in

working with strings.

Text Helper
The Text Helper file contains functions that assist in

working with text.

Typography Helper
The Typography Helper file contains functions that help

your format text in semantically relevant ways.

URL Helper
The URL Helper file contains functions that assist in

working with URLs.

XML Helper
The XML Helper file contains functions that assist in

working with XML data.

Loading a Helper

A helper can be loaded as shown below:

$this->load->helper('name');

Where name is the name of the helper. For example, if you want to load the URL Helper,

then it can be loaded as:

$this->load->helper('url');

Routing

CodeIgniter has user-friendly URI routing system, so that you can easily re-route URL.

Typically, there is a one-to-one relationship between a URL string and its corresponding

controller class/method. The segments in a URI normally follow this pattern:

your-domain.com/class/method/id/

 The first segment represents the controller class that should be invoked.

 The second segment represents the class function, or method, that should be

called.

 The third, and any additional segments, represent the ID and any variables that

will be passed to the controller.

In some situations, you may want to change this default routing mechanism. CodeIgniter

provides facility through which you can set your own routing rules.

Customize Routing Rules

There is a particular file where you can handle all these. The file is located at

application/config/routes.php. You will find an array called $route in which you can

customize your routing rules. The key in the $route array will decide what to route and

the value will decide where to route. There are three reserved routes in CodeIgniter.

CodeIgniter

17

Reserved Routes

$route['default_controller']

This route indicates which controller class should be

loaded, if the URI contains no data, which will be the

case when people load your root URL. You are

encouraged to have a default route otherwise a 404

page will appear, by default. We can set home page

of website here so it will be loaded by default.

$route['404_override']

This route indicates which controller class should be

loaded if the requested controller is not found. It will

override the default 404 error page. It won’t affect

to the show_404() function, which will continue

loading the default error_404.php file in

application/views/errors/error_404.php.

$route['translate_uri_dashes']

As evident by the Boolean value, this is not exactly a

route. This option enables you to automatically

replace dashes (‘-‘) with underscores in the

controller and method URI segments, thus saving

you additional route entries if you need to do that.

This is required because the dash is not a valid class

or method-name character and will cause a fatal

error, if you try to use it.

Routes can be customized by wildcards or by using regular expressions but keep in

mind that these customized rules for routing must come after the reserved rules.

Wildcards

We can use two wildcard characters as explained below:

 (:num) – It will match a segment containing only numbers.

 (:any) – It will match a segment containing any character.

Example

$route['product/:num']='catalog/product_lookup';

In the above example, if the literal word “product” is found in the first segment of the

URL, and a number is found in the second segment, the “catalog” class and the

“product_lookup” method are used instead.

CodeIgniter

18

Regular Expressions

Like wildcards, we can also use regular expressions in $route array key part. If any

URI matches with regular expression, then it will be routed to the value part set into

$route array.

Example

$route['products/([a-z]+)/(\d+)']='$1/id_$2';

In the above example, a URI similar to products/shoes/123 would instead call the

“shoes” controller class and the “id_123” method.

CodeIgniter

19

After setting up the site, the next thing that we should do is to configure the site. The

application/config folder contains a group of files that set basic configuration of your site.

Configuring Base URL

The base URL of the site can be configured in application/config/config.php file. It is URL

to your CodeIgniter root. Typically, this will be your base URL, with a trailing slash e.g.

http://example.com/

If this is not set, then CodeIgniter will try to guess the protocol, domain and path to your

installation. However, you should always configure this explicitly and never rely on auto-

guessing, especially in production environments. You can configure the base URL in the

$config array with key “base_url” as shown below:

$config['base_url'] = 'http://your-domain.com';

Database Configuration

The database of the site can be configured in application/database.php file. Often we

need to set up database for different environment like development and production. With

the multidimensional array provided in the CodeIgniter, we can setup database for

different environment. The configuration settings are stored in the array as shown

below:

$db['default'] = array(

 'dsn' => '',

 'hostname' => 'localhost',

 'username' => 'root',

 'password' => '',

 'database' => 'database_name',

 'dbdriver' => 'mysqli',

 'dbprefix' => '',

 'pconnect' => TRUE,

 'db_debug' => TRUE,

 'cache_on' => FALSE,

 'cachedir' => '',

 'char_set' => 'utf8',

 'dbcollat' => 'utf8_general_ci',

6. CodeIgniter – Configuration

CodeIgniter

20

 'swap_pre' => '',

 'encrypt' => FALSE,

 'compress' => FALSE,

 'stricton' => FALSE,

 'failover' => array()

);

You can leave few options to their default values except hostname, username, password,

database and dbdriver.

 hostname: Specify location of your database here e.g. localhost or IP address

 username: Set username of your database here.

 password: Set password of your database here.

 database: Set name of the database here.

 dbdriver: Set type of database that you are using e.g. MySQL, MySQLi,

Postgre SQL, ODBC, and MS SQL.

By changing the key of the array $db, you can set other configuration of database as

shown below. Here, we have set the key to ‘test’ to set the database for testing

environment, by keeping the other database environment as it is.

$db['test'] = array(

 'dsn' => '',

 'hostname' => 'localhost',

 'username' => 'root',

 'password' => '',

 'database' => 'database_name',

 'dbdriver' => 'mysqli',

 'dbprefix' => '',

 'pconnect' => TRUE,

 'db_debug' => TRUE,

 'cache_on' => FALSE,

 'cachedir' => '',

 'char_set' => 'utf8',

 'dbcollat' => 'utf8_general_ci',

 'swap_pre' => '',

 'encrypt' => FALSE,

 'compress' => FALSE,

 'stricton' => FALSE,

 'failover' => array()

CodeIgniter

21

);

You can simply switch to different environment by changing the value of a variable as

shown below:

$active_group = ‘default’; //This will set the default environment

$active_group = ‘test’; //This will set the test environment

Autoload Configuration

This file specifies, by default, which systems should be loaded. In order to keep the

framework as light-weight as possible, only the absolute minimal resources are loaded

by default. One should autoload the frequently used system, rather than loading it at

local level, repeatedly. Following are the things you can load automatically:

 Libraries: It is a list of libraries, which should be auto loaded. Provide a list of

libraries in an array as shown below to be autoloaded by CodeIgniter. In this

example, we are auto loading database, email and session libraries.

$autoload['libraries'] = array('database', 'email', 'session');

 Drivers: These classes are located in system/libraries/ or in your

application/libraries/ directory, but are also placed inside their own subdirectory

and they extend the CI_Driver_Library class. They offer multiple interchangeable

driver options. Following is an example to autoload cache drivers.

$autoload['drivers'] = array('cache');

 Helper files: It is a list of helper files, to be autoloaded. Provide a list of libraries

in the array, as shown below, to be autoloaded by CodeIgniter. In the given

example, we are autoloading URL and file helpers.

$autoload['helper'] = array('url', 'file');

 Custom config files: These files are intended for use, only if you have created

custom config files. Otherwise, leave it blank. Following is an example of how to

autoload more than one config files.

$autoload['config'] = array('config1', 'config2');

 Language files: It is a list of language files, which should be auto loaded. Look

at the example given below. Provide a list of languages in an array as shown

below to be auto loaded by CodeIgniter. Keep in mind that do not include the

"_lang" part of your file. For example, "codeigniter_lang.php" would be

referenced as array('codeigniter');

CodeIgniter

22

$autoload['language'] = array('lang1', 'lang2');

 Models: It is a list of models file, which should be autoloaded. Provide a list of

models in an array as shown below to be autoloaded by CodeIgniter. Following is

the example of how to auto load more than one models files.

$autoload['model'] = array('first_model', 'second_model');

CodeIgniter

23

Like any other framework, we need to interact with the database very often and

CodeIgniter makes this job easy for us. It provides rich set of functionalities to interact

with database.

In this section, we will understand how the CRUD (Create, Read, Update, Delete)

functions work with CodeIgniter. We will use stud table to select, update, delete, and

insert the data in stud table.

Table Name: stud

roll_no int(11)

Name varchar(30)

Connecting to a Database

We can connect to database in the following two way:.

 Automatic Connecting: Automatic connection can be done by using the file

application/config/autoload.php. Automatic connection will load the database for

each and every page. We just need to add the database library as shown below:

$autoload['libraries'] = array(‘library’);

 Manual Connecting: If you want database connectivity for only some of the

pages, then we can go for manual connecting. We can connect to database

manually by adding the following line in any class.

$this->load->database();

Here, we are not passing any argument because everything is set in the database config

file application/config/database.php

Inserting a Record

To insert a record in the database, the insert() function is used as shown in the following

table:

Syntax insert([$table = ''[, $set = NULL[, $escape = NULL]]])

Parameters

 $table (string) – Table name

 $set (array) – An associative array of field/value

pairs

 $escape (bool) – Whether to escape values and

identifiers

7. Working with Database

CodeIgniter

24

Returns TRUE on success, FALSE on failure
Return Type bool

The following example shows how to insert a record in stud table. The $data is an array

in which we have set the data and to insert this data to the table stud, we just need to

pass this array to the insert function in the 2nd argument.

$data = array(

 'roll_no' => ‘1’,

 'name' => ‘Virat’

);

$this->db->insert("stud", $data);

Updating a Record

To update a record in the database, the update() function is used along with set() and

where() functions as shown in the tables below. The set() function will set the data to

be updated.

Syntax set($key[, $value = ''[, $escape = NULL]])

Parameters

 $key (mixed) – Field name, or an array of field/value

pairs

 $value (string) – Field value, if $key is a single field

 $escape (bool) – Whether to escape values and

identifiers

Returns CI_DB_query_builder instance (method chaining)

Return Type CI_DB_query_builder

The where() function will decide which record to update.

Syntax where($key[, $value = NULL[, $escape = NULL]])

Parameters

 $key (mixed) – Name of field to compare, or

associative array

 $value (mixed) – If a single key, compared to this

value

 $escape (bool) – Whether to escape values and

identifiers

Returns DB_query_builder instance

Return Type object

CodeIgniter

25

Finally, the update() function will update data in the database.

Syntax
update([$table = ''[, $set = NULL[, $where = NULL[, $limit

= NULL]]]])

Parameters

 $table (string) – Table name

 $set (array) – An associative array of field/value

pairs

 $where (string) – The WHERE clause

 $limit (int) – The LIMIT clause

Returns TRUE on success, FALSE on failure

Return Type bool

$data = array(

 'roll_no' => ‘1’,

 'name' => ‘Virat’

);

$this->db->set($data);

$this->db->where("roll_no", ‘1’);

$this->db->update("stud", $data);

Deleting a Record

To delete a record in the database, the delete() function is used as shown in the

following table:

Syntax
delete([$table = ''[, $where = ''[, $limit = NULL[,

$reset_data = TRUE]]]])

Parameters

 $table (mixed) – The table(s) to delete from; string

or array

 $where (string) – The WHERE clause

 $limit (int) – The LIMIT clause

 $reset_data (bool) – TRUE to reset the query “write”

clause

Returns
CI_DB_query_builder instance (method chaining) or FALSE

on failure

Return Type mixed

CodeIgniter

26

Use the following code to to delete a record in the stud table. The first argument

indicates the name of the table to delete record and the second argument decides which

record to delete.

$this->db->delete("stud", "roll_no = 1");

Selecting a Record

To select a record in the database, the get function is used, as shown in the following

table:

Syntax get([$table = ''[, $limit = NULL[, $offset = NULL]]])

Parameters

 $table (string) – The table to query

 $limit (int) – The LIMIT clause

 $offset (int) – The OFFSET clause

Returns CI_DB_result instance (method chaining)

Return Type CI_DB_result

Use the following code to get all the records from the database. The first statement

fetches all the records from “stud” table and returns the object, which will be stored in

$query object. The second statement calls the result() function with $query object to

get all the records as array.

$query = $this->db->get("stud");

$data['records'] = $query->result();

Closing a Connection

Database connection can be closed manually, by executing the following code:

$this->db->close();

Example

Create a controller class called Stud_controller.php and save it at

application/controller/Stud_controller.php

Here is a complete example, wherein all of the above-mentioned operations are

performed. Before executing the following example, create a database and table as

instructed at the starting of this chapter and make necessary changes in the database

config file stored at application/config/database.php

<?php

class Stud_controller extends CI_Controller {

CodeIgniter

27

 function __construct(){

 parent::__construct();

 $this->load->helper('url');

 $this->load->database();

 }

 public function index()

 {

 $query = $this->db->get("stud");

 $data['records'] = $query->result();

 $this->load->helper('url');

 $this->load->view('Stud_view',$data);

 }

 public function add_student_view(){

 $this->load->helper('form');

 $this->load->view('Stud_add');

 }

 public function add_student(){

 $this->load->model('Stud_Model');

 $data = array(

 'roll_no' => $this->input->post('roll_no'),

 'name' => $this->input->post('name')

);

 $this->Stud_Model->insert($data);

 $query = $this->db->get("stud");

 $data['records'] = $query->result();

 $this->load->view('Stud_view',$data);

 }

 public function update_student_view(){

 $this->load->helper('form');

 $roll_no = $this->uri->segment('3');

 $query = $this->db->get_where("stud",array("roll_no"=>$roll_no));

CodeIgniter

28

 $data['records'] = $query->result();

 $data['old_roll_no'] = $roll_no;

 $this->load->view('Stud_edit',$data);

 }

 public function update_student(){

 $this->load->model('Stud_Model');

 $data = array(

 'roll_no' => $this->input->post('roll_no'),

 'name' => $this->input->post('name')

);

 $old_roll_no = $this->input->post('old_roll_no');

 $this->Stud_Model->update($data,$old_roll_no);

 $query = $this->db->get("stud");

 $data['records'] = $query->result();

 $this->load->view('Stud_view',$data);

 }

 public function delete_student(){

 $this->load->model('Stud_Model');

 $roll_no = $this->uri->segment('3');

 $this->Stud_Model->delete($roll_no);

 $query = $this->db->get("stud");

 $data['records'] = $query->result();

 $this->load->view('Stud_view',$data);

 }

}

?>

Create a model class called Stud_Model.php and save it in

application/models/Stud_Model.php

<?php

 class Stud_Model extends CI_Model{

 function __construct(){

CodeIgniter

29

 parent::__construct();

 }

 public function insert($data){

 if ($this->db->insert("stud", $data)) {

 return true;

 }

 }

 public function delete($roll_no){

 if ($this->db->delete("stud", "roll_no = ".$roll_no)) {

 return true;

 }

 }

 public function update($data,$old_roll_no){

 $this->db->set($data);

 $this->db->where("roll_no", $old_roll_no);

 $this->db->update("stud", $data);

 }

 }

?>

Create a view file called Stud_add.php and save it in

application/views/Stud_add.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Students Example</title>

</head>

<body>

<form method = "" action = "">

<?php

 echo form_open('Stud_controller/add_student');

CodeIgniter

30

 echo form_label('Roll No.');

 echo form_input(array('id'=>'roll_no','name'=>'roll_no'));

 echo "
";

 echo form_label('Name');

 echo form_input(array('id'=>'name','name'=>'name'));

 echo "
";

 echo form_submit(array('id'=>'submit','value'=>'Add'));

 echo form_close();

?>

</form>

</body>

</html>

Create a view file called Stud_edit.php and save it in

application/views/Stud_edit.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Students Example</title>

</head>

<body>

<form method = "" action = "">

<?php

 echo form_open('Stud_controller/update_student');

 echo form_hidden('old_roll_no',$old_roll_no);

 echo form_label('Roll No.');

 echo

form_input(array('id'=>'roll_no','name'=>'roll_no','value'=>$records[0]-

>roll_no));

 echo "
";

 echo form_label('Name');

 echo

form_input(array('id'=>'name','name'=>'name','value'=>$records[0]->name));

 echo "
";

 echo form_submit(array('id'=>'submit','value'=>'Edit'));

CodeIgniter

31

 echo form_close();

?>

</form>

</body>

</html>

Create a view file called Stud_view.php and save it in

application/views/Stud_view.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Students Example</title>

</head>

<body>

<a href="<?php echo base_url(); ?>index.php/stud/add_view">Add <table

border="1">

 <?php

 $i=1;

 echo "<tr>";

 echo "<td>Sr#</td>";

 echo "<td>Roll No.</td>";

 echo "<td>Name</td>";

 echo "<td>Edit</td>";

 echo "<td>Delete</td>";

 echo "<tr>";

 foreach($records as $r){

 echo "<tr>";

 echo "<td>".$i++."</td>";

 echo "<td>".$r->roll_no."</td>";

 echo "<td>".$r->name."</td>";

 echo "<td>roll_no."'>Edit</td>";

 echo "<td>roll_no."'>Delete</td>";

 echo "<tr>";

 }

 ?>

CodeIgniter

32

</table>

</body>

</html>

Make the following change in the route file at application/config/routes.php and add

the following line at the end of file.

$route['stud'] = "Stud_controller";

$route['stud/add'] = 'Stud_controller/add_student';

$route['stud/add_view'] = 'Stud_controller/add_student_view';

$route['stud/edit/(\d+)'] = 'Stud_controller/update_student_view/$1';

$route['stud/delete/(\d+)'] = 'Stud_controller/delete_student/$1';

Now, let us execute this example by visiting the following URL in the browser. Replace

the yoursite.com with your URL.

http://yoursite.com/index.php/stud

CodeIgniter

33

The essential part of a CodeIgniter framework is its libraries. It provides a rich set of

libraries, which indirectly increase the speed of developing an application. The system

library is located at system/libraries. All we need to do is to load the library that we want

to use. The library can be loaded as shown below:

$this->load->library('class name');

Where class name is the name of the library that we want to load. If we want to load

multiple libraries, then we can simply pass an array as argument to library() function as

shown below:

$this->load->library(array('email', 'table'));

Library Classes

The library classes are located in system/libraries. Each class has various functions to

simplify the developing work. Following table shows the names of the library class and

its description.

Library Class Description

Benchmarking Class

Benchmarking class is always active, enabling the time

difference between any two marked points to be

calculated.

Caching Class
This class will cache the pages, to quickly access the

page speed.

Calendaring Class Using this class, you can dynamically create calendars.

Shopping Cart Class

Using this class, you can add or remove item from

Shopping Cart. The items are saved in session and will

remain active until the user is browsing the site.

Config Class
Configuration preferences can be retrieved, using this

class. This class is initialized automatically.

Email Class
This class provides email related functionality, like send

or reply to email.

Encryption Class
This class provides two-way data encryption

functionality.

File Uploading Class

This class provides functionalities related to file

uploading. You can set various preferences like type of

file to be uploaded, size of the files etc.

Form Validation Class This class provides various functions to validate form.

FTP Class

This class provides various FTP related functions like

transferring files to remove server, moving, renaming or

deleting files on server.

Image Manipulation Class

Manipulation of image like resize, thumbnail creation,

cropping, rotating, watermarking can be done with the

help of this class.

Input Class
This class pre-processes the input data for security

reason.

8. CodeIgniter – Libraries

CodeIgniter

34

Language Class This class is used for internationalization.

Loader Class
This class loads elements like View files, Drivers,

Helpers, Models etc.

Migrations Class
This class provides functionalities related to database

migrations.

Output Class
This class sends the output to browser and also, caches

that webpage.

Pagination Class This class adds pagination functionalities to web page.

Template Parser Class

The Template Parser Class can perform simple text

substitution for pseudo-variables contained within your

view files. It can parse simple variables or variable tag

pairs.

Security Class
This class contains security related functions like XSS

Filtering, CSRF etc.

Session Library
This class provides functionalities to maintain session of

your application.

HTML Table
This class is used to auto-generate HTML tables from

array or database results.

Trackback Class
The Trackback Class provides functions that enable you

to send and receive Trackback data.

Typography Class
The Typography Class provides methods that help to

format text.

Unit Testing Class
This class provides functionalities to unit test your

application and generate the result.

URI Class

The URI Class provides methods that help you retrieve

information from your URI strings. If you use URI

routing, you can also retrieve information about the re-

routed segments.

User Agent Class

The User Agent Class provides functions that help

identify information about the browser, mobile device,

or robot visiting your site. In addition, you can get

referrer information as well as language and supported

character-set information.

XML-RPC and XML-RPC

Server Classes

CodeIgniter’s XML-RPC classes permit you to send

requests to another server, or set up your own XML-RPC

server to receive requests.

Zip Encoding Class This class is used to create zip archives of your data.

Creating Libraries

CodeIgniter has rich set of libraries, which you can find in system/libraries folder but

CodeIgniter is not just limited to system libraries, you can create your own libraries too,

which can be stored in application/libraries folder. You can create libraries in three

ways.

 Create new library

 Extend the native library

 Replace the native library

CodeIgniter

35

Create New Library

While creating new library one should keep in mind, the following things:

 The name of the file must start with a capital letter e.g. Mylibrary.php

 The class name must start with a capital letter e.g. class Mylibrary

 The name of the class and name of the file must match.

Mylibrary.php

<?php if (! defined('BASEPATH')) exit('No direct script access allowed');

class Mylibrary {

 public function some_function()

 {

 }

}

/* End of file Mylibrary.php */

Loading the Custom Library

The above library can be loaded by simply executing the following line in your controller.

$this->load->library(‘mylibrary’);

mylibrary is the name of your library and you can write it in lowercase as well as

uppercase letters. Use the name of the library without “.php” extension. After loading

the library, you can also call the function of that class as shown below.

$this->mylibrary->some_function();

Extend the Native Library

Sometimes, you may need to add your own functionality to the library provided by

CodeIgniter. CodeIgniter provides facility by which you can extend the native library and

add your own functions. To achieve this, you must extend the class of native library

class. For example if you want to extend the Email library then it can be done as shown

below:

Class MY_Email extends CI_Email {

}

Here, in the above example, MY_Email class is extending the native library’s email class

CI_Email. This library can be loaded by the standard way of loading email library. Save

the above code in file My_Email.php

CodeIgniter

36

Replace the Native Library

In some situations, you do not want to use the native library the way it works and want

to replace it with your own way. This can be done by replacing the native library. To

achieve this, you just need to give the same class name as it is named in native library.

For example, if you want to replace the Email class, then use the code as shown below.

Save your file name with Email.php and give a class name to CI_Email.

Email.php

Class CI_Email {

}

CodeIgniter

37

Many times, while using application, we come across errors. It is very annoying for the

users if the errors are not handled properly. CodeIgniter provides an easy error handling

mechanism.

You would like the messages to be displayed, when the application is in developing mode

rather than in production mode as the error messages can be solved easily at the

developing stage.

The environment of your application can be changed, by changing the line given below

from index.php file. This can be set to anything but normally there are three values

(development, test, production) used for this purpose.

define('ENVIRONMENT', isset($_SERVER['CI_ENV']) ? $_SERVER['CI_ENV'] :

'development');

Different environment will require different levels of error reporting. By default,

development mode will display errors and testing and live mode will hide them.

CodeIgniter provides three functions as shown below to handle errors.

1. show_error() function displays errors in HTML format at the top of the screen.

Syntax
show_error($message, $status_code, $heading = 'An Error Was

Encountered')

Parameters

 $message (mixed) – Error message

 $status_code (int) – HTTP Response status code

 $heading (string) – Error page heading

Return Type mixed

2. show_404() function displays error if you are trying to access a page which does

not exist.

Syntax show_404($page = '', $log_error = TRUE)

Parameters

 $page (string) – URI string
 $log_error (bool) – Whether to log the error

Return Type void

9. 9. Error Handling

CodeIgniter

38

3. log_message() function is used to write log messages. This is useful when you

want to write custom messages.

Syntax log_message($level, $message, $php_error = FALSE)

Parameters

 $level (string) – Log level: ‘error’, ‘debug’ or ‘info’

 $message (string) – Message to log

 $php_error (bool) – Whether we’re logging a native

PHP error message

Return Type void

Logging can be enabled in application/config/config.php file. Given below is the

screenshot of config.php file, where you can set threshold value.

You can find the log messages in application/log/. Make sure that this directory is

writable before you enable log files.

Various templates for error messages can be found in application/views/errors/cli or

application/views/errors/html.

CodeIgniter

39

Using File Uploading class, we can upload files and we can also, restrict the type and size

of the file to be uploaded. Follow the steps shown in the given example to understand

the file uploading process in CodeIgniter.

Example

Copy the following code and store it at application/view/Upload_form.php.

<html>

<head>

<title>Upload Form</title>

</head>

<body>

<form method = "" action = "">

<?php echo $error;?>

<?php echo form_open_multipart('upload/do_upload');?>

<input type="file" name="userfile" size="20" />

<input type="submit" value="upload" />

</form>

</body>

</html>

Copy the code given below and store it at application/view/Upload_success.php

<html>

<head>

<title>Upload Form</title>

</head>

<body>

<h3>Your file was successfully uploaded!</h3>

<?phpforeach ($upload_data as $item => $value):?>

10. File Uploading

CodeIgniter

40

<?php echo $item;?>: <?php echo $value;?>

<?phpendforeach; ?>

<p><?php echo anchor('upload', 'Upload Another File!'); ?></p>

</body>

</html>

Copy the code given below and store it at application/controllers/Upload.php.

Create “uploads” folder at the root of CodeIgniter i.e. at the parent directory of

application folder.

<?php

class Upload extends CI_Controller {

public function __construct()

 {

 parent::__construct();

 $this->load->helper(array('form', 'url'));

 }

public function index()

 {

 $this->load->view('upload_form', array('error' => ' '));

 }

public function do_upload()

 {

 $config['upload_path'] = './uploads/';

 $config['allowed_types'] = 'gif|jpg|png';

 $config['max_size'] = 100;

 $config['max_width'] = 1024;

 $config['max_height'] = 768;

 $this->load->library('upload', $config);

CodeIgniter

41

if (! $this->upload->do_upload('userfile'))

 {

 $error = array('error' => $this->upload->display_errors());

 $this->load->view('upload_form', $error);

 }

else

 {

 $data = array('upload_data' => $this->upload->data());

 $this->load->view('upload_success', $data);

 }

 }

}

?>

Make the following change in the route file in application/config/routes.php and add

the following line at the end of file.

$route['upload'] = 'Upload';

Now let us execute this example by visiting the following URL in the browser. Replace

the yoursite.com with your URL.

http://yoursite.com/index.php/upload

It will produce the following screen:

Figure: Upload Form

CodeIgniter

42

After successfully uploading a file, you will see the following screen:

Figure: File successfully uploaded

CodeIgniter

43

Sending email in CodeIgniter is much easier. You also configure the preferences

regarding email in CodeIgniter. CodeIgniter provides following features for sending

emails:

 Multiple Protocols: Mail, Sendmail, and SMTP

 TLS and SSL Encryption for SMTP

 Multiple recipients

 CC and BCCs

 HTML or Plaintext email

 Attachments

 Word wrapping

 Priorities

 BCC Batch Mode, enabling large email lists to be broken into small BCC batches.

 Email Debugging tools

Email class has the following functions to simplify the job of sending emails.

Syntax from($from[, $name = ''[, $return_path = NULL]])

Parameters

 $from (string) – “From” e-mail address

 $name (string) – “From” display name

 $return_path (string) – Optional email address to

redirect undelivered e-mail to

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax reply_to($replyto[, $name = ''])

Parameters

 $replyto (string) – E-mail address for replies

 $name (string) – Display name for the reply-to e-mail

address

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax to($to)

Parameters

 $to (mixed) – Comma-delimited string or an array of

e-mail addresses

11. Sending Email

CodeIgniter

44

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax cc($cc)

Parameters

 $cc (mixed) – Comma-delimited string or an array of

e-mail addresses

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax bcc($bcc[, $limit = ''])

Parameters

 $bcc (mixed) – Comma-delimited string or an array

of e-mail addresses

 $limit (int) – Maximum number of e-mails to send

per batch

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax subject($subject)

Parameters $subject (string) – E-mail subject line

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax message($body)

Parameters $body (string) – E-mail message body

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax set_alt_message($str)

Parameters $str (string) – Alternative e-mail message body

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax set_header($header, $value)

Parameters
 $header (string) – Header name

 $value (string) – Header value

Return CI_Email instance (method chaining)

Return type CI_Email

CodeIgniter

45

Syntax clear([$clear_attachments = FALSE])

Parameters
 $clear_attachments (bool) – Whether or not to

clear attachments

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax send([$auto_clear = TRUE])

Parameters
 $auto_clear (bool) – Whether to clear message data

automatically

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax
attach($filename[, $disposition = ''[, $newname = NULL[,

$mime = '']]])

Parameters

 $filename (string) – File name

 $disposition (string) – ‘disposition’ of the

attachment. Most email clients make their own

decision regardless of the MIME specification used

here. https://www.iana.org/assignments/cont-

disp/cont-disp.xhtml

 $newname (string) – Custom file name to use in the

e-mail

 $mime (string) – MIME type to use (useful for

buffered data)

Return CI_Email instance (method chaining)

Return type CI_Email

Syntax attachment_cid($filename)

Parameters $filename (string) – Existing attachment filename

Return Attachment Content-ID or FALSE if not found

Return type string

Sending an Email

To send an email using CodeIgniter, first you have to load email library using the

following:

$this->load->library('email');

After loading the library, simply execute the following functions to set necessary

elements to send an email. The from() function is used to set- from where the email is

being sent and to() function is used - to whom the email is being sent. The subject()

and message() function is used to set the subject and message of the email.

https://www.iana.org/assignments/cont-disp/cont-disp.xhtml
https://www.iana.org/assignments/cont-disp/cont-disp.xhtml

CodeIgniter

46

$this->email->from('your@example.com', 'Your Name');

$this->email->to('someone@example.com');

$this->email->subject('Email Test');

$this->email->message('Testing the email class.');

After that, execute the send() function as shown below to send an email.

$this->email->send();

Example

Create a controller file Email_controller.php and save it in

application/controller/Email_controller.php.

<?php

class Email_controller extends CI_Controller {

 function __construct()

 {

 parent::__construct();

 $this->load->library('session');

 $this->load->helper('form');

 }

 public function index()

 {

 $this->load->helper('form');

 $this->load->view('email_form');

 }

 public function send_mail()

 {

 $from_email = "your@example.com";

 $to_email = $this->input->post('email');

 //Load email library

 $this->load->library('email');

 $this->email->from($from_email, 'Your Name');

 $this->email->to($to_email);

CodeIgniter

47

 $this->email->subject('Email Test');

 $this->email->message('Testing the email class.');

 //Send mail

 if($this->email->send())

 $this->session->set_flashdata("email_sent","Email sent

successfully.");

 else

 $this->session->set_flashdata("email_sent","Error in sending

Email.");

 $this->load->view('email_form');

 }

}

?>

Create a view file called email_form.php and save it at

application/views/email_form.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>CodeIgniter Email Example</title>

</head>

<body>

<?php

 echo $this->session->flashdata('email_sent');

 echo form_open('/Email_controller/send_mail');

?>

 <input type="email" name="email" required />

 <input type="submit" value="SEND MAIL">

<?php

 echo form_close();

?>

</body>

</html>

CodeIgniter

48

Make the changes in the routes.php file in application/config/routes.php and add

the following line at the end of the file.

$route['email'] = 'Email_Controller';

Execute the above example by visiting the following link. Replace the yoursite.com with

the URL of your site.

http://yoursite.com/index.php/email

CodeIgniter

49

Validation is an important process while building web application. It ensures that the

data that we are getting is proper and valid to store or process. CodeIgniter has made

this task very easy. Let us understand this process with a simple example.

Example

Create a view file myform.php and save the below code it in

application/views/myform.php. This page will display form where user can submit

his name and we will validate this page to ensure that it should not be empty while

submitting.

<html>

<head>

<title>My Form</title>

</head>

<body>

<form method = "" action = "">

<?php echo validation_errors(); ?>

<?php echo form_open('form'); ?>

<h5>Name</h5>

<input type="text" name="name" value="" size="50" />

<div><input type="submit" value="Submit" /></div>

</form>

</body>

</html>

Create a view file formsuccess.php and save it in

application/views/formsuccess.php. This page will be displayed if the form is

validated successfully.

<html>

<head>

12. Form Validation

CodeIgniter

50

<title>My Form</title>

</head>

<body>

<h3>Your form was successfully submitted!</h3>

<p><?php echo anchor('form', 'Try it again!'); ?></p>

</body>

</html>

Create a controller file Form.php and save it in application/controller/Form.php.

This form will either, show errors if it is not validated properly or redirected to

formsuccess.php page.

<?php

class Form extends CI_Controller {

public function index()

{

 /* Load form helper */

 $this->load->helper(array('form'));

 /* Load form validation library */

 $this->load->library('form_validation');

 /* Set validation rule for name field in the form */

 $this->form_validation->set_rules('name', 'Name', 'required');

if ($this->form_validation->run() == FALSE)

 {

 $this->load->view('myform');

 }

else

 {

 $this->load->view('formsuccess');

 }

CodeIgniter

51

 }

}

Add the following line in application/config/routes.php.

$route['validation'] = 'Form';

Let us execute this example by visiting the following URL in the browser. This URL may

be different based on your site.

http://yoursite.com/index.php/validation

It will produce the following screen:

Figure: Validation Form

We have added a validation in the controller – Name is required field before submitting

the form. So, if you click the submit button without entering anything in the name field,

then you will be asked to enter the name before submitting as shown in the screen

below.

Figure: Form Not Validated Successfully

After entering the name successfully, you will be redirected to the screen as shown

below.

Figure: Form Not Validated Successfully

CodeIgniter

52

In the above example, we have used the required rule setting. There are many rules

available in the CodeIgniter, which are described below.

Validation Rule Reference

The following is a list of all the native rules that are available to use:

Rule Parameter Description Example

required No

Returns FALSE if the

form element is

empty.

matches Yes

Returns FALSE if the

form element does

not match the one in

the parameter.

matches[form_item]

regex_match Yes

Returns FALSE if the

form element does

not match the regular

expression.

regex_match[/regex/]

differs Yes

Returns FALSE if the

form element does

not differ from the

one in the parameter.

differs[form_item]

is_unique Yes

Returns FALSE if the

form element is not

unique to the table

and field name in the

parameter. Note:

This rule requires

Query Builder to be

enabled in order to

work.

is_unique[table.field]

min_length Yes

Returns FALSE if the

form element is

shorter than the

parameter value.

min_length[3]

max_length Yes

Returns FALSE if the

form element is

longer than the

parameter value.

max_length[12]

exact_length Yes

Returns FALSE if the

form element is not

exactly the

parameter value.

exact_length[8]

greater_than Yes

Returns FALSE if the

form element is less

than or equal to the

parameter value or

not numeric.

greater_than[8]

greater_than_equal_to Yes

Returns FALSE if the

form element is less

than the parameter

value, or not

numeric.

greater_than_equal_to[8]

file:///C:/Users/VIRAT/Desktop/Codeigniter/codeigniter_user_guide/database/query_builder.html

CodeIgniter

53

less_than Yes

Returns FALSE if the

form element is

greater than or equal

to the parameter

value or not numeric.

less_than[8]

less_than_equal_to Yes

Returns FALSE if the

form element is

greater than the

parameter value, or

not numeric.

less_than_equal_to[8]

in_list Yes

Returns FALSE if the

form element is not

within a

predetermined list.

in_list[red,blue,green]

alpha No

Returns FALSE if the

form element

contains anything

other than

alphabetical

characters.

alpha_numeric No

Returns FALSE if the

form element

contains anything

other than alpha-

numeric characters.

alpha_numeric_spaces No

Returns FALSE if the

form element

contains anything

other than alpha-

numeric characters or

spaces. Should be

used after trim to

avoid spaces at the

beginning or end.

alpha_dash No

Returns FALSE if the

form element

contains anything

other than alpha-

numeric characters,

underscores or

dashes.

numeric No

Returns FALSE if the

form element

contains anything

other than numeric

characters.

integer No

Returns FALSE if the

form element

contains anything

other than an

integer.

decimal No

Returns FALSE if the

form element

contains anything

other than a decimal

number.

CodeIgniter

54

is_natural No

Returns FALSE if the

form element

contains anything

other than a natural

number: 0, 1, 2, 3,

etc.

is_natural_no_zero No

Returns FALSE if the

form element

contains anything

other than a natural

number, but not

zero: 1, 2, 3, etc.

valid_url No

Returns FALSE if the

form element does

not contain a valid

URL.

valid_email No

Returns FALSE if the

form element does

not contain a valid

email address.

valid_emails No

Returns FALSE if any

value provided in a

comma-separated list

is not a valid email.

valid_ip No

Returns FALSE if the

supplied IP is not

valid. Accepts an

optional parameter of

‘ipv4’ or ‘ipv6’ to

specify an IP format.

valid_base64 No

Returns FALSE if the

supplied string

contains anything

other than valid

Base64 characters.

CodeIgniter

55

When building websites, we often need to track user’s activity and state and for this

purpose, we have to use session. CodeIgniter has session class for this purpose.

Initializing a Session

Sessions data are available globally through the site but to use those data we first need

to initialize the session. We can do that by executing the following line in constructor.

$this->load->library('session');

After loading the session library, you can simply use the session object as shown below.

$this->session

Add Session Data

In PHP, we simply use $_SESSION array to set any data in session as shown below.

$_SESSION[‘key’] = value;

Where ‘key’ is the key of array and value is assigned on right side of equal to sign.

The same thing can be done in CodeIgniter as shown below.

$this->session->set_userdata('some_name', 'some_value');

set_userdata() function takes two arguments. The first argument, some_name, is the

name of the session variable, under which, some_value will be stored.

set_userdata() function also supports another syntax in which you can pass array to

store values as shown below.

$newdata = array(

 'username' => 'johndoe',

 'email' => 'johndoe@some-site.com',

 'logged_in' => TRUE

);

$this->session->set_userdata($newdata);

13. Session Management

CodeIgniter

56

Remove Session Data

In PHP, we can remove data stored in session using the unset() function as shown

below.

unset($_SESSION[‘some_name’]);

Removing session data in CodeIgniter is very simple as shown below. The below version

of unset_userdata() function will remove only one variable from session.

$this->session->unset_userdata('some_name');

If you want to remove more values from session or to remove an entire array you can

use the below version of unset_userdata() function.

$this->session->unset_userdata($array_items);

Fetch Session Data

After setting data in session, we can also retrieve that data as shown below. Userdata()

function will be used for this purpose. This function will return NULL if the data you are

trying to access is not available.

$name=$this->session->userdata('name');

Example

Create a controller class called Session_controller.php and save it in

application/controller/Session_controller.php.

<?php

class Session_controller extends CI_Controller {

 public function index()

 {

 //loading session library

 $this->load->library('session');

 //adding data to session

 $this->session->set_userdata('name','virat');

 $this->load->view('session_view');

 }

 public function unset_sesssion_data(){

 //loading session library

CodeIgniter

57

 $this->load->library('session');

 //removing session data

 $this->session->unset_userdata('name');

 $this->load->view('session_view');

 }

}

?>

Create a view file called session_view.php and save it in

application/views/session_view.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>CodeIgniter Session Example</title>

</head>

<body>

 Welcome <?php echo $this->session->userdata('name'); ?>

 <a href='http://localhost:85/CodeIgniter-3.0.1/CodeIgniter-

3.0.1/index.php/sessionex/unset'>Click Here to unset session data.

</body>

</html>

Make the changes in the routes.php file in application/config/routes.php and add

the following line at the end of the file.

$route['sessionex'] = 'Session_Controller';

Execute the above example by using the following address. Replace yoursite.com with

the URL of your site.

http://yoursite.com/index.php/sessionex

CodeIgniter

58

While building web application, we need to store some data for only one time and after

that we want to remove that data. For example, to display some error message or

information message. In PHP, we have to do it manually but CodeIgniter has made this

job simple for us. In CodeIgniter, flashdata will only be available until the next request,

and it will get deleted automatically.

Add Flashdata

We can simply store flashdata as shown below.

$this->session->mark_as_flash('item');

 mark_as_flash() function is used for this purpose, which takes only one

argument of the value to be stored. We can also pass an array to store multiple

values.

 set_flashdata() function can also be used, which takes two arguments, name

and value, as shown below. We can also pass an array.

$this->session->set_flashdata('item','value');

Retrieve Flashdata

Flashdata can be retrieved using the flashdata() function which takes one argument of

the item to be fetched as shown below. flashdata() function makes sure that you are

getting only flash data and not any other data.

$this->session->flashdata('item');

If you do not pass any argument, then you can get an array with the same function.

Example

Create a class called FlashData_Controller.php and save it at

application/controller/FlashData_Controller.php.

<?php

class FlashData_Controller extends CI_Controller {

 public function index()

 {

 //Load session library

 $this->load->library('session');

14. Flashdata

CodeIgniter

59

 //redirect to home page

 $this->load->view('flashdata_home');

 }

 public function add(){

 //Load session library

 $this->load->library('session');

 $this->load->helper('url');

 //add flash data

 $this->session->set_flashdata('item','item-value');

 //redirect to home page

 redirect('flashdata');

 }

}

?>

Create a view file called flashdata_home.php and save it in application/views/

flashdata_home.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>CodeIgniter Flashdata Example</title>

</head>

<body>

 Flash Data Example

<h2><?php echo $this->session->flashdata('item'); ?></h2>

Click Here to add flash data.

</body>

</html>

Make the changes in the routes.php file in application/config/routes.php and add

the following line at the end of the file.

CodeIgniter

60

$route['flashdata'] = 'FlashData_Controller';

$route['flashdata/add'] = 'FlashData_Controller/add';

Execute the above example by visiting the following link. Replace the yoursite.com with

the URL of your site.

http://yoursite.com/index.php/flashdata

After visiting the above URL, you will see a screen as shown below.

Figure: Flashdata Example

Click on “Click Here” link and you will see a screen as shown below. Here, in this

screen you will see a value of flash data variable. Refresh the page again and you will

see a screen like above and flash data variable will be removed automatically.

CodeIgniter

61

In some situations, where you want to remove data stored in session after some specific

time-period, this can be done using tempdata functionality in CodeIgniter.

Add Tempdata

To add data as tempdata, we have to use mark_as_tempdata() function. This

function takes two argument items or items to be stored as tempdata and the

expiration time for those items are as shown below.

// 'item' will be erased after 300 seconds(5 minutes)

$this->session->mark_as_temp('item',300);

You can also pass an array to store multiple data. All the items stored below will be

expired after 300 seconds.

$this->session->mark_as_temp(array('item','item2'),300);

You can also set different expiration time for each item as shown below.

// 'item' will be erased after 300 seconds, while 'item2'

// will do so after only 240 seconds

$this->session->mark_as_temp(array(

'item'=>300,

'item2'=>240

));

Retrieve Tempdata

We can retrieve the tempdata using tempdata() function. This function assures that

you are getting only tempdata and not any other data. Look at the example given below

to see how to retrieve tempdata. tempdata() function will take one argument of the

item to be fetched.

$this->session->tempdata('item');

If you omit the argument, then you can retrieve all the existing tempdata.

Remove Tempdata

Tempdata is removed automatically after its expiration time but if you want to remove

tempdata before that, then you can do as shown below using the unset_tempdata()

function, which takes one argument of the item to be removed.

$this->session->unset_tempdata('item');

15. Tempdata

CodeIgniter

62

Example

Create a class called Tempdata_controller.php and save it in

application/controller/Tempdata_controller.php.

<?php

class Tempdata_controller extends CI_Controller {

 public function index()

 {

 $this->load->library('session');

 $this->load->view('tempdata_view');

 }

 public function add()

 {

 $this->load->library('session');

 $this->load->helper('url');

 //tempdata will be removed after 5 seconds

 $this->session->set_tempdata('item','item-value',5);

 redirect('tempdata');

 }

}

?>

Create a file called tempdata_view.php and save it in

application/views/tempdata_view.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>CodeIgniter Tempdata Example</title>

</head>

<body>

 Temp Data Example

<h2><?php echo $this->session->tempdata('item'); ?></h2>

CodeIgniter

63

Click Here to add temp data.

</body>

</html>

Make the changes in the routes.php file in application/config/routes.php and add the

following line at the end of the file.

$route['tempdata'] = "Tempdata_controller";

$route['tempdata/add'] = "Tempdata_controller/add";

Execute the above example by visiting the following link. Replace the yoursite.com with

the URL of your site.

http://yoursite.com/index.php/tempdata

After visiting the above URL, you will see a screen as shown below.

Click on “Click Here” link and you will see a screen as shown below.

Here, in this screen you will see a value of temp data variable. Refresh the same page

after five seconds again as we have set the temp data for five seconds and you will see a

screen like above and temp data variable will be removed automatically after five

seconds. If you refresh the same page before 5 seconds, then the temp data will not be

removed, as the time period is not over.

CodeIgniter

64

Destroying a Session

In PHP, we are using the session_destroy() function to destroy the session and in

CodeIgniter we can destroy the function as shown below.

$this->session->sess_destroy();

After calling this function, all the session data including the flashdata and tempdata

will be deleted permanently and cannot be retrieved back.

CodeIgniter

65

Cookie is a small piece of data sent from web server to store on client’s computer.

CodeIgniter has one helper called “Cookie Helper” for cookie management.

Syntax

set_cookie($name[, $value = ''[, $expire = ''[, $domain =

''[, $path = '/'[, $prefix = ''[, $secure = FALSE[, $httponly =

FALSE]]]]]]]])

Parameters

 $name (mixed) – Cookie name or associative array

of all of the parameters available to this function

 $value (string) – Cookie value

 $expire (int) – Number of seconds until expiration

 $domain (string) – Cookie domain (usually:

.yourdomain.com)

 $path (string) – Cookie path

 $prefix (string) – Cookie name prefix

 $secure (bool) – Whether to only send the cookie

through HTTPS

 $httponly (bool) – Whether to hide the cookie from

JavaScript

Return type void

In the set_cookie() function, we can pass all the values using two ways. In the first

way, only array can be passed and in the second way, individual parameters can also be

passed.

Syntax get_cookie($index[, $xss_clean = NULL]])

Parameters

 $index (string) – Cookie name

 $xss_clean (bool) – Whether to apply XSS filtering

to the returned value

Return The cookie value or NULL if not found

Return type mixed

16. Cookie Management

CodeIgniter

66

The get_cookie() function is used to get the cookie that has been set using the

set_cookie() function.

Syntax
delete_cookie($name[, $domain = ''[, $path = '/'[, $prefix =

'']]]])

Parameters

 $name (string) – Cookie name

 $domain (string) – Cookie domain (usually:

.yourdomain.com)

 $path (string) – Cookie path

 $prefix (string) – Cookie name prefix

Return type void

The delete_cookie() function is used to delete the cookie().

Example

Create a controller called Cookie_controller.php and save it at

application/controller/Cookie_controller.php

<?php

class Cookie_controller extends CI_Controller {

 function __construct()

 {

 parent::__construct();

 $this->load->helper(array('cookie', 'url'));

 }

 public function index()

 {

 set_cookie('cookie_name','cookie_value','3600');

 $this->load->view('Cookie_view');

 }

 public function display_cookie()

 {

 echo get_cookie('cookie_name');

 $this->load->view('Cookie_view');

CodeIgniter

67

 }

 public function deletecookie()

 {

 delete_cookie('cookie_name');

 redirect('cookie/display');

 }

}

?>

Create a view file called Cookie_view.php and save it at

application/views/Cookie_view.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>CodeIgniter View Example</title>

</head>

<body>

 Click Here to view the cookie.

 Click Here to delete the cookie.

</body>

</html>

Change the routes.php file in application/config/routes.php to add route for the above

controller and add the following line at the end of the file.

$route['cookie'] = "Cookie_controller";

$route['cookie/display'] = "Cookie_controller/display_cookie";

$route['cookie/delete'] = "Cookie_controller/deletecookie";

After that, you can execute the following URL in the browser to execute the example.

http://yoursite.com/index.php/cookie

It will produce an output as shown in the following screenshot.

CodeIgniter

68

CodeIgniter library functions and helper functions need to be initialized before they are

used but there are some common functions, which do not need to be initialized.

These common functions and their descriptions are given below.

Syntax is_php($version)

Parameters $version (string) – Version number

Return
TRUE if the running PHP version is at least the one specified

or FALSE if not

Return type void

Description
Determines if the PHP version being used is greater than the

supplied version number.

Syntax is_really_writable($file)

Parameters $file (string) – File path

Return TRUE if the path is writable, FALSE if not

Return type bool

Description checks to see if file is writable or not.

Syntax config_item($key)

Parameters $key (string) – Config item key

Return Configuration key value or NULL if not found

Return type mixed

Description This function is used to get the configuration item.

Syntax set_status_header($code[, $text = ''])

Parameters

 $code (int) – HTTP Response status code

 $text (string) – A custom message to set with the

status code

Return type void

Description
This function permits you to manually set a server status

header.

Syntax
remove_invisible_characters($str[, $url_encoded =

TRUE])

Parameters

 $str (string) – Input string

 $url_encoded (bool) – Whether to remove URL-

encoded characters as well

Return Sanitized string

Return type string

Description
This function prevents inserting NULL characters between

ASCII characters

17. Common Functions

CodeIgniter

69

Syntax html_escape($var)

Parameters $var (mixed) – Variable to escape (string or array)

Return HTML escaped string(s)

Return type mixed

Description
This function acts as a native PHP htmlspecialchars()

function.

Syntax get_mimes()

Return An associative array of file types

Return type array

Description
This function returns a reference to the MIMEs array from

application/config/mimes.php.

Syntax is_https()

Return TRUE if currently using HTTP-over-SSL, FALSE if not

Return type bool

Description
Returns TRUE if a secure (HTTPS) connection is used and

FALSE in any other case (including non-HTTP requests).

Syntax is_cli()

Return TRUE if currently running under CLI, FALSE otherwise

Return type bool

Description
Returns TRUE if the application is run through the command

line and FALSE if not.

Syntax function_usable($function_name)

Parameters $function_name (string) – Function name

Return type bool

Description
Returns TRUE if a function exists and is usable, FALSE

otherwise.

Given below is an example, which demonstrates all of the above functions.

Example

Here we have created only one controller in which we will use the above functions. Copy

the below given code and save it at

application/controller/CommonFun_Controller.php.

<?php

class CommonFun_Controller extends CI_Controller {

 public function index()

 {

CodeIgniter

70

 set_status_header(200);

 echo is_php('5.3')."
";

 var_dump(is_really_writable('./Form.php'));

 echo config_item('language')."
";

 echo remove_invisible_characters('This is a ‌test','UTF-

8')."
";

 $str = '< This > is \' a " test & string';

 echo html_escape($str)."
";

 echo "is_https():".var_dump(is_https())."
";

 echo "is_cli():".var_dump(is_cli())."
";

 var_dump(function_usable('test'))."
";

 echo "get_mimes():".print_r(get_mimes())."
";

 }

 public function test(){

 echo "Test function";

 }

}

?>

Change the routes.php file at application/config/routes.php to add route for the above

controller and add the following line at the end of the file.

$route['commonfunctions'] = 'CommonFun_Controller';

Type the following URL in the address bar of your browser to execute the example.

http://yoursite.com/index.php/commonfunctions

CodeIgniter

71

Caching a page will improve the page load speed. If the page is cached, then it will be

stored in its fully rendered state. Next time, when the server gets a request for the

cached page, it will be directly sent to the requested browser.

Cached files are stored in application/cache folder. Caching can be enabled on per

page basis. While enabling the cache, we need to set the time, until which it needs to

remain in cached folder and after that period, it will be deleted automatically.

Enable Caching

Caching can be enabled by executing the following line in any of the controller’s method.

$this->output->cache($n);

Where $n is the number of minutes, you wish the page to remain cached between

refreshes.

Disable Caching

Cache file gets deleted when it expires but when you want to delete it manually, then

you have to disable it. You can disable the caching by executing the following line.

// Deletes cache for the currently requested URI

$this->output->delete_cache();

// Deletes cache for /foo/bar

$this->output->delete_cache('/foo/bar');

Example

Create a controller called Cache_controller.php and save it in

application/controller/Cache_controller.php

<?php

class Cache_controller extends CI_Controller {

 public function index()

 {

 $this->output->cache(1);

 $this->load->view('test');

 }

18. Page Caching

CodeIgniter

72

 public function delete_file_cache()

 {

 $this->output->delete_cache('cachecontroller');

 }

}

?>

Create a view file called test.php and save it in application/views/test.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>CodeIgniter View Example</title>

</head>

<body>

 CodeIgniter View Example

</body>

</html>

Change the routes.php file in application/config/routes.php to add route for the

above controller and add the following line at the end of the file.

$route['cachecontroller'] = 'Cache_controller';

$route['cachecontroller/delete'] = 'Cache_controller/delete_file_cache';

Type the following URL in the browser to execute the example.

http://yoursite.com/index.php/cachecontroller

After visiting the above URL, you will see that a cache file for this will be created in

application/cache folder. To delete the file, visit the following URL.

http://yoursite.com/index.php/cachecontroller/delete

CodeIgniter

73

While building web application, we often need to redirect the user from one page to

another page. CodeIgniter makes this job easy for us. The redirect() function is used

for this purpose.

Syntax redirect($uri = '', $method = 'auto', $code = NULL)

Parameters

 $uri (string) – URI string

 $method (string) – Redirect method (‘auto’, ‘location’

or ‘refresh’)

 $code (string) – HTTP Response code (usually 302 or

303)

Return type void

The first argument can have two types of URI. We can pass full site URL or URI

segments to the controller you want to direct.

The second optional parameter can have any of the three values from auto, location or

refresh. The default is auto.

The third optional parameter is only available with location redirects and it allows you to

send specific HTTP response code.

Example

Create a controller called Redirect_controller.php and save it in

application/controller/Redirect_controller.php

<?php

class Redirect_controller extends CI_Controller {

 public function index()

 {

 /*Load the URL helper*/

 $this->load->helper('url');

 /*Redirect the user to some site*/

 redirect('http://www.tutorialspoint.com');

 }

19. Page Redirection

CodeIgniter

74

 public function computer_graphics()

 {

 /*Load the URL helper*/

 $this->load->helper('url');

redirect('http://www.tutorialspoint.com/computer_graphics/index.htm');

 }

 public function version2()

 {

 /*Load the URL helper*/

 $this->load->helper('url');

 /*Redirect the user to some internal controller’s method*/

 redirect('redirect/computer_graphics');

 }

}

?>

Change the routes.php file in application/config/routes.php to add route for the

above controller and add the following line at the end of the file.

$route['redirect'] = 'Redirect_controller';

$route['redirect/version2'] = 'Redirect_controller/version2';

$route['redirect/computer_graphics'] = 'Redirect_controller/computer_graphics';

Type the following URL in the browser, to execute the example.

http://yoursite.com/index.php/redirect

The above URL will redirect you to the tutorialspoint.com website and if you visit the

following URL, then it will redirect you to the computer graphics tutorial at

tutorialspoint.com.

http://yoursite.com/index.php/redirect/computer_graphics

CodeIgniter

75

When building a web application, we are very much concerned about the performance of

the website in terms of how much time the controller took to execute and how much

memory is used. Not only the performance, but we also need to see the insights of data

like POST data, data of database queries, session data etc. for debugging purpose while

developing some application. CodeIgniter has made this job easier for us by profiling an

application.

Enable Profiling

To enable profiling of your application, simply execute the command given below in any

of the method of your controller.

$this->output->enable_profiler(TRUE);

The report of the profiling can be seen at the bottom of the page after enabling it.

Disable Profiling

To disable profiling of your application, simply execute the command given below in any

of the method of your controller.

$this->output->enable_profiler(FALSE);

Enable / Disable Profiler Section

Profiling can be done on section basis. You can enable or disable profiling of a section by

setting a Boolean value TRUE or FALSE. If you want to set profiling on the application

then you can do in a file located in application/config/profiler.php

For example, the following command will enable profiling queries for the whole

application.

$config['queries'] = TRUE;

In the following table, the key is the parameter, which can be set in the config array to

enable or disable a particular profile.

Key Description Default

benchmarks Elapsed time of Benchmark points and total

execution time
TRUE

config CodeIgniterConfig variables TRUE

controller_info The Controller class and method requested TRUE

get Any GET data passed in the request TRUE

http_headers The HTTP headers for the current request TRUE

20. Application Profiling

CodeIgniter

76

memory_usage Amount of memory consumed by the current

request, in bytes
TRUE

post Any POST data passed in the request TRUE

queries Listing of all database queries executed, including

execution time
TRUE

uri_string The URI of the current request TRUE

session_data Data stored in the current session TRUE

query_toggle_count The number of queries after which the query

block will default to hidden.
25

The profiler set in the file in application/config/profiler.php can be overridden by

using the set_profiler_sections() function in controllers as shown below.

$sections = array(

 'config' => TRUE,

 'queries' => TRUE

);

$this->output->set_profiler_sections($sections);

CodeIgniter

77

Setting Benchmark Points

If you want to measure the time taken to execute a set of lines or memory usage, you

can calculate it by using Benchmarking points in CodeIgniter. There is a separate

“Benchmarking” class for this purpose in CodeIgniter.

This class is loaded automatically; you do not have to load it. It can be used anywhere in

your controller, view, and model classes. All you have to do is to mark a start point and

end point and then execute the elapsed_time() function between these two marked

points and you can get the time it took to execute that code as shown below.

<?php

$this->benchmark->mark('code_start');

// Some code happens here

$this->benchmark->mark('code_end');

echo $this->benchmark->elapsed_time('code_start', 'code_end');

?>

To display the memory usage, use the function memory_usage() as shown in the

following code.

<?php

 echo $this->benchmark->memory_usage();

?>

Example

Create a controller called Profiler_controller.php and save it in

application/controller/Profiler_controller.php

<?php

class Profiler_controller extends CI_Controller {

 public function index()

 {

 //enable profiler

21. Benchmarking

CodeIgniter

78

 $this->output->enable_profiler(TRUE);

 $this->load->view('test');

 }

 public function disable()

 {

 //disable profiler

 $this->output->enable_profiler(FALSE);

 $this->load->view('test');

 }

}

?>

Create a view file called test.php and save it at application/views/test.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>CodeIgniter View Example</title>

</head>

<body>

 CodeIgniter View Example

</body>

</html>

Change the routes.php file at application/config/routes.php to add route for the

above controller and add the following line at the end of the file.

$route['profiler'] = "Profiler_controller";

$route['profiler/disable'] = "Profiler_controller/disable";

After that, you can type the following URL in the address bar of your browser to execute

the example.

http://yoursite.com/index.php/profiler

CodeIgniter

79

The above URL will enable the profiler and it will produce an output as shown in the

following screenshot.

To disable the profiling, execute the following URL.

http://yoursite.com/index.php/profiler/disable

CodeIgniter

80

Adding JavaScript and CSS (Cascading Style Sheet) file in CodeIgniter is very simple.

You have to create JS and CSS folder in root directory and copy all the .js files in JS

folder and .css files in CSS folder as shown in the figure.

For example, let us assume, you have created one JavaScript file sample.js and one

CSS file style.css. Now, to add these files into your views, load URL helper in your

controller as shown below.

$this->load->helper('url');

After loading the URL helper in controller, simply add the below given lines in the view

file, to load the sample.js and style.css file in the view as shown below.

<link rel="stylesheet" type="text/css" href="<?php echo base_url();

?>css/style.css">

<script type='text/javascript' src="<?php echo base_url();

?>js/sample.js"></script>

Example

Create a controller called Test.php and save it in application/controller/Test.php

<?php

class Test extends CI_Controller {

22. Adding JS and CSS

CodeIgniter

81

 public function index()

 {

 $this->load->helper('url');

 $this->load->view('test');

 }

}

?>

Create a view file called test.php and save it at application/views/test.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>CodeIgniter View Example</title>

 <link rel="stylesheet" type="text/css" href="<?php echo base_url();

?>css/style.css">

 <script type='text/javascript' src="<?php echo base_url();

?>js/sample.js"></script>

</head>

<body>

 Click Here to execute the javascript

function.

</body>

</html>

Create a CSS file called style.css and save it at css/style.css

body{

 background:#000;

 color:#FFF;

}

Create a JS file called sample.js and save it at js/sample.js

function test()

{

 alert('test');

}

Change the routes.php file in application/config/routes.php to add route for the

above controller and add the following line at the end of the file.

CodeIgniter

82

$route['profiler'] = "Profiler_controller";

$route['profiler/disable'] = "Profiler_controller/disable";

Use the following URL in the browser to execute the above example.

http://yoursite.com/index.php/test

CodeIgniter

83

The language class in CodeIgniter provides an easy way to support multiple languages

for internationalization. To some extent, we can use different language files to display

text in many different languages.

We can put different language files in application/language directory. System language

files can be found at system/language directory, but to add your own language to your

application, you should create a separate folder for each language in

application/language directory.

Creating Language files

To create a language file, you must end it with _lang.php. For example, you want to

create a language file for French language, then you must save it with

french_lang.php. Within this file you can store all your language texts in key, value

combination in $lang array as shown below.

$lang[‘key’] = ‘val’;

Loading Language file

To use any of the language in your application, you must first load the file of that

particular language to retrieve various texts stored in that file. You can use the following

code to load the language file.

$this->lang->load('filename', 'language');

 filename – It is the name of file you want to load. Don’t use extension of file

here but only name of file.

 Language – It is the language set containing it.

Fetching Language Text

To fetch a line from the language file simply execute the following code.

$this->lang->line('language_key');

Where language_key is the key parameter used to fetch value of the key in the loaded

language file.

Autoload Languages

If you need some language globally, then you can autoload it in

application/config/autoload.php file as shown below.

23. Internationalization

CodeIgniter

84

Simply, pass the different languages to be autoloaded by CodeIgniter.

Example

Create a controller called Lang_controller.php and save it in

application/controller/Lang_controller.php

<?php

class Lang_controller extends CI_Controller {

 public function index()

 {

 //Load form helper

 $this->load->helper('form');

 //Get the selected language

 $language = $this->input->post('language');

 //Choose language file according to selected lanaguage

 if($language == "french")

 $this->lang->load('french_lang','french');

 else if($language == "german")

 $this->lang->load('german_lang','german');

 else

 $this->lang->load('english_lang','english');

 //Fetch the message from language file.

 $data['msg'] = $this->lang->line('msg');

 $data['language'] = $language;

CodeIgniter

85

 //Load the view file

 $this->load->view('lang_view',$data);

 }

}

?>

Create a view file called lang_view.php and save it at application/views/

lang_view.php

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>CodeIgniter Internationalization Example</title>

</head>

<body>

<?php

 echo form_open('/lang');

?>

 <select name="language" onchange="javascript:this.form.submit();">

 <?php

 $lang =

array('english'=>"English",'french'=>"French",'german'=>"German");

 foreach($lang as $key=>$val)

 {

 if($key == $language)

 echo "<option value='".$key."'

selected>".$val."</option>";

 else

 echo "<option value='".$key."'>".$val."</option>";

 }

 ?>

 </select>

<?php

 form_close();

 echo $msg;

CodeIgniter

86

?>

</body>

</html>

Create three folders called English, French, and German in application/language as

shown in the figure below.

Copy the below given code and save it in english_lang.php file in

application/language/english folder.

<?php

 $lang['msg'] = "CodeIgniter Internationalization example.";

?>

Copy the below given code and save it in french_lang.php file in

application/language/French folder.

<?php

 $lang['msg'] = "Exemple CodeIgniter internationalisation.";

?>

CodeIgniter

87

Copy the below given code and save it in german_lang.php file in

application/language/german folder.

<?php

 $lang['msg'] = "CodeIgniter Internationalisierung Beispiel.";

?>

Change the routes.php file in application/config/routes.php to add route for the

above controller and add the following line at the end of the file.

$route['lang'] = "Lang_controller";

Execute the following URL in the browser to execute the above example.

http://yoursite.com/index.php/lang

It will produce an output as shown in the following screenshot. If you change the

language in the dropdown list, the language of the sentence written below the dropdown

will also change accordingly.

CodeIgniter

88

XSS Prevention

XSS means cross-site scripting. CodeIgniter comes with XSS filtering security. This filter

will prevent any malicious JavaScript code or any other code that attempts to hijack

cookie and do malicious activities. To filter data through the XSS filter, use the

xss_clean() method as shown below.

$data=$this->security->xss_clean($data);

You should use this function only when you are submitting data. The optional second

Boolean parameter can also be used to check image file for XSS attack. This is useful for

file upload facility. If its value is true, means image is safe and not otherwise.

SQL Injection Prevention

SQL injection is an attack made on database query. In PHP, we are use

mysql_real_escape_string() function to prevent this along with other techniques but

CodeIgniter provides inbuilt functions and libraries to prevent this.

We can prevent SQL Injection in CodeIgniter in the following three ways:

 Escaping Queries

 Query Biding

 Active Record Class

Escaping Queries

<?php

$username= $this->input->post('username');

$query = 'SELECT * FROM subscribers_tbl WHERE user_name='.$this->db-

>escape($email);

$this->db->query($query);

?>

$this->db->escape() function automatically adds single quotes around the data and

determines the data type so that it can escape only string data.

Query Biding

<?php

$sql = "SELECT * FROM some_table WHERE id = ? AND status = ? AND author = ?";

24. CodeIgniter – Security

CodeIgniter

89

$this->db->query($sql, array(3, 'live', 'Rick'));

?>

In the above example, the question mark(?) will be replaced by the array in the second

parameter of query() function. The main advantage of building query this way is that the

values are automatically escaped which produce safe queries. CodeIgniter engine does it

for you automatically, so you do not have to remember it.

Active Record Class

<?php

 $this->db->get_where('subscribers_tbl',array('status'=> active','email' =>

'info@arjun.net.in'));

?>

Using active records, query syntax is generated by each database adapter. It also allows

safer queries, since the values escape automatically.

Hiding PHP Errors

In production environment, we often do not want to display any error message to the

users. It is good if it is enabled in the development environment for debugging purposes.

These error messages may contain some information, which we should not show to the

site users for security reasons.

There are three CodeIgniter files related with errors.

PHP Error Reporting Level

Different environment requires different levels of error reporting. By default,

development will show errors but testing and live will hide them. There is a file called

index.php in root directory of CodeIgniter, which is used for this purpose. If we pass

zero as argument to error_reporting() function then that will hide all the errors.

Database Error

Even if you have turned off the PHP errors, MySQL errors are still open. You can turn this

off in application/config/database.php. Set the db_debug option in $db array to

FALSE as shown below.

$db['default']['db_debug'] = FALSE;

Error log

Another way is to transfer the errors to log files. So, it will not be displayed to users on

the site. Simply, set the log_threshold value in $config array to 1 in

application/cofig/config.php file as shown below.

$config['log_threshold'] = 1;

CodeIgniter

90

CSRF Prevention

CSRF stands for cross-site request forgery. You can prevent this attack by enabling it in

the application/config/config.php file as shown below.

$config['csrf_protection']=TRUE;

When you are creating form using form_open() function, it will automatically insert a

CSRF as hidden field. You can also manually add the CSRF using the

get_csrf_token_name() and get_csrf_hash() function. The

get_csrf_token_name() function will return the name of the CSRF and

get_csrf_hash() will return the hash value of CSRF.

The CSRF token can be regenerated every time for submission or you can also keep it

same throughout the life of CSRF cookie. By setting the value TRUE, in config array with

key ‘csrf_regenerate’ will regenerate token as shown below.

$config['csrf_regenerate']=TRUE;

You can also whitelist URLs from CSRF protection by setting it in the config array using

the key ‘csrf_exclude_uris’ as shown below. You can also use regular expression.

$config['csrf_exclude_uris']=array('api/person/add');

Password Handling

Many developers do not know how to handle password in web applications, which is

probably why numerous hackers find it so easy to break into the systems. One should

keep in mind the following points while handling passwords:

 DO NOT store passwords in plain-text format.

 Always hash your passwords.

 DO NOT use Base64 or similar encoding for storing passwords.

 DO NOT use weak or broken hashing algorithms like MD5 or SHA1. Only use

strong password hashing algorithms like BCrypt, which is used in PHP’s own

Password Hashing functions.

 DO NOT ever display or send a password in plain-text format.

 DO NOT put unnecessary limits on your users’ passwords.

